

Birkom Shock Comparison Durability Test

SGS Report No. 16Y-0075-352_REV.2

Test Start Date: 6/13/16

Test End Date: 9/13/16

Attention: Bob Carlstedt President Birkom Automotive Components Co., Ltd. Suite 103, Building B, North Area, E-link World Building No.999, Huaxu Road, Qingpu District, Shanghai, P.R. China

Work: 248.701.4744 / +86 137 9547 3447 Email: bob.carlstedt@birkomauto.com

Issued by:

min Shafen.

Dennis Shaffer Test Engineer September 14, 2016

Note: This report is not to be reproduced unless authorized by SGS Advanced Testing & Engineering, Inc. The condition as received of all samples is good unless otherwise noted. This report only applies to the samples included. Measurement Uncertainty Budget available upon request.

ADVANCED TESTING & ENGINEERING INC. IS NOW PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

www.sgs.com

Member of the SGS Group (SGS SA)

Test Method Identification

Test Specification: Testing was completed per SGS Quotation 16Y-0075-352 dated 5-30-2016. Additional test plan revision direction via email correspondence and as outlined below. Reference Set-up Photographs #1 & 2.

- > Displacement: ±50mm @ 1.0Hz with ±10mm @ 10Hz superimposed
- Mid-Stroke: 94mm from rod shoulder to top of tube
- \triangleright Waveform: Sine on Sine

- Total Cycles: 1M cycles at 1.0Hz.
 Temperature Range: 90°C 110°C located near top of tube
 Coolant Water Jackets and shop air used to reduce thermal-cycling
- ▶ Weight: Recorded at 0, 1M, and EOT cycles only
- ➤ Failure Criteria: >20% D/F loss

Note: 2 Rigs were ultimately used due to Rig 1 malfunction (actuator manifold cracked on 8/9/2016). Test samples were not compromised due to the malfunction in any way.

Test Item Identification

Sample#	Part Description
S.1916	Comparison Shock
Birkom #1	Birkom Shock
Birkom #2	Birkom Shock
Birkom#3	Replacement shock for Birkom #2 continuation

Durability Test Results

Sample	Rig	Start Date	End Date	Total Cycles	SOT Weight (g)	1M Weight (g)	EOT Weight (g)	Comments
S.1916	1,2	6/17/16	9/5/16	1,310,825	3,354	3,159	3,147	Suspend test. Sample 36% loss of load & Rod discoloration noted. No oil leakage noted. Replace with Slave Shock #3 (Replacement)
Birkom# 1	1	6/17/16	6/19/16	82,655	3,654	NA	3,645	Suspend test. Sample 70% loss of load & Rod discoloration noted. No oil leakage noted. Replace with Birkom #2.
Birkom# 2	1,2	8/12/16	9/13/16	1,568,926	3,656	3,584	3,571	Test Suspended per customer request. <i>Shock still operating normally.</i> Discoloration noted. No oil leakage noted.

Cyclic Load Data

Cycles	S1916	Birkom S.#1 Shock	Birkom S.#2 Shock	Slave Shock (Replacement)
SOT	13,661/-1149	12,043/-1185	13,385/-2010	NA
82,655	12,404/-1037	*3941/-1024	11,329/-1851	NA
336,536	12,652/-1668	NA	11,319/-1854	NA
500,000	12,825/-1479	NA	11,401/-1958	NA
917,345	*10,861/-919	NA	11,388/-1564	NA
1M	*10,427/-890	NA	11,336/-1202	NA
1,310,825	*8,621/-505	NA	11,120/-1333	NA
1,568,926	NA	NA	11,231/-1313	NA

*Indicates a load loss of greater than 20%

Test Photographs

Photograph #2: Rig2 Setup

Test Photographs (Continued)

Photograph #3: Comparison Shock Rod discoloration at 82,655 cyc.

Photograph #4: Comparison Shock Post Test

Photograph #5: Birkom#1, rod discoloration at 50,610 cyc. Photograph #6: Birkom#2, rod discoloration at 34,692 cyc.

SGS

Photograph #7: Birkom#2, rod discoloration at 219,866 cyc. Photograph #8: Birkom#2 Post-test

A2LA Certification

American Association for Laboratory Accreditation

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

SGS ADVANCED TESTING & ENGINEERING, INC.¹ 12255 Delta St. Taylor, Michigan 48180 Michael Riley Phone: 734 735 9339 <u>Michael Riley2@sgs.com</u>

MECHANICAL

Valid To: January 31, 2018

Certificate Number: 1901.01

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory at the location listed above as well as the one satellite laboratory location listed below to perform the following tests on the following automotive components: <u>Seating Systems and Components, Exhaust Systems and Components, Shock Absorbers, Interior and Exterior Trim, Structural Components and Stampings:</u>

Test	Parameter	Test Method		
Airleak Testing ²	(Up to 100 slpm)	ES8C34-5K214-AD:2008		
Durability / Axial and Bending Fatigue & Ultimate Strength ²	50,000 lbs max.	ES-F8UA-5K214-AA:1997, Section III D & F; Ford CETP 09.03-E300 Rev 200412; GES-97040A; GMW14390:2005		
High / Low Temperature ²	(-55 to 120) °C, 62 ft ³	TES TSD6522G:2004		
High Temperature Air Flow ²	2,500 scfm, 1200 °C max.	CTS, Section 4.4.2.1; Ford CETP 09.02-E-300, Ford CETP 09.02-E-301; GMPT Catalytic Converter Assembly		
Thermal Shock (Waterspray)		CTS, Section 4.4.2.1; DCX PF-9019, Section 2.4; Ford CETP 09.02-E-301; GMPT Catalytic Converter Assembly		
Vibration ² with High Temperature Air Flow 2,500 scfm, 1200 °C max.	(5 to 3,000) Hz Up to 3" peak to peak displacement	CTS, Section 4.4.2.1; DCX PF-9019; Ford CETP 09.02-E-302, Ford CETP 09.02-E-304,		
Sine 22,000 lbf		Ford CETP 09.02-E-308,		
Random	22,000 lbf	Ford CETP 09.02-E-309;		
Shock 54,000 lbf		GMPT Catalytic Converter Assembly		

- (. B.

(A2LA Cert. No. 1901.01) 05/10/2016

Page 1 of 2

5202 Presidents Court, Suite 220 | Frederick, MD 21703-8398 | Phone: 301 644 3248 | Fax: 240 454 9449 | www.A2LA.org

A2LA Certification (Continued)

¹This accreditation covers testing performed at the main laboratory location listed above, and the following laboratory listed below:

804 Maplelawn Troy, MI 48084

Test	Parameter	Test Method
Durability / Axial and	50,000 lbs max.	ES-F8UA-5K214-AA:1997, Section III D & F;
Bending Fatigue & Ultimate		Ford CETP 09.03-E300 Rev 200412;
Strength ²		GES-97040A;
		GMW14390:2005
High / Low Temperature ²	(-40 to 120) ℃, 62 ft ³	TES TSD6522G:2004
Acoustic Measurements	(45-138) dbA in anechoic chamber	TES TSD6542G

²This laboratory also uses customer supplied specifications and/or methods (or methods developed by the lab and approved by the client) directly related to the types of tests and within the parameters listed above.

